Deep Recurrent Neural Networks for Human Activity Recognition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Recurrent Neural Networks for Human Activity Recognition

Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convol...

متن کامل

Human Activity Recognition Using Deep Recurrent Neural Networks and Complexity-based Motion Features

Microsoft Kinect can be used for computationally inexpensive acquisition of skeleton tracking in real time. For human activity recognition, it appears to provide an opportunity for researchers to achieve good performance at low cost. However, two issues still remain. Firstly, the Kinect skeleton tracker often captures unnatural skeleton poses, such as discontinuous and vibrated motions, in the ...

متن کامل

Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for succ...

متن کامل

Audio Visual Speech Recognition Using Deep Recurrent Neural Networks

In this work, we propose a training algorithm for an audiovisual automatic speech recognition (AV-ASR) system using deep recurrent neural network (RNN).First, we train a deep RNN acoustic model with a Connectionist Temporal Classification (CTC) objective function. The frame labels obtained from the acoustic model are then used to perform a non-linear dimensionality reduction of the visual featu...

متن کامل

Recurrent Deep Stacking Networks for Speech Recognition

This paper presented our work on applying Recurrent Deep Stacking Networks (RDSNs) to Robust Automatic Speech Recognition (ASR) tasks. In the paper, we also proposed a more efficient yet comparable substitute to RDSN, BiPass Stacking Network (BPSN). The main idea of these two models is to add phoneme-level information into acoustic models, transforming an acoustic model to the combination of an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2017

ISSN: 1424-8220

DOI: 10.3390/s17112556